Justin London – Modeling Derivatives in C++
Justin London – Modeling Derivatives in C++
Justin London – Modeling Derivatives in C++
Product Delivery: You will receive a download link via your order email
Should you have any question, do not hesitate to contact us: support@nextskillup.com
$8.00


Secure Payments
Pay with the worlds payment methods.

Discount Available
Covers payment and purchase gifts.

100% Money-Back Guarantee

Need Help?
(484) 414-5835
Share Our Wines With Your Friends & Family
Description
JUSTIN LONDON – MODELING DERIVATIVES IN C
The most comprehensive guide to modeling derivatives in C is in this book. This is a practical introduction to the most important derivative models used in practice today, including equity, and provides readers with not only the theory and math behind the models, as well as the fundamental concepts of financial engineering, but also actual robust object-oriented C code. The book provides complete C implementations for many of the most important derivatives and interest rate pricing models used on Wall Street. London illustrates the practical and efficient implementations of these models in real-world situations and discusses the mathematical underpinning and derivation of the models in a detailed yet accessible manner illustrated by many examples with numerical data as well as real market data. A companion CD contains quantitative libraries, tools, applications, and resources that will be of value to those doing quantitative programming and analysis in C. Modeling Derivatives in C will help readers understand and implement C when modeling all types of derivatives.
TABLE OF CONTENTS
Preface.
Acknowledgments.
CHAPTER 2: MONTE CARLO SIMULATION.
CHAPTER 3: BINOMIAL TREES.
CHAPTER 4: TRINOMIAL TREES.
CHAPTER 5: FINITE-DIFFERENCE METHODS.
CHAPTER 6: EXOTIC OPTIONS.
CHAPTER 7: STOCHASTIC VOLATILITY.
CHAPTER 8: STATISTICAL MODELS.
CHAPTER 9: STOCHASTIC MULTIFACTOR MODELS.
CHAPTER 10: SINGLE-FACTOR INTEREST RATE MODELS.
CHAPTER 11: TREE-BUILDING PROCEDURES.
CHAPTER 12: TWO-FACTOR MODELS AND THE HEATH-JARROW-MORTON MODEL.
CHAPTER 13: LIBOR MARKET MODELS.
CHAPTER 14: BERMUDAN AND EXOTIC INTEREST RATE DERIVATIVES.
APPENDIX A: PROBABILITY REVIEW.
APPENDIX B: STOCHASTIC CALCULUS REVIEW.
THE WILEY ADVANTAGE
A guide to derivatives pricing models and their code.
The models are provided in a way that is easy to understand.
There are examples with real market data.
The companion CD has quantitative libraries, tools, and applications.
Get Justin London – Modeling Derivatives in C on nextskillup.com
Modeling Derivatives in C, Download Modeling Derivatives in C, Free Modeling Derivatives in C, Modeling Derivatives in C torrent, Modeling Derivatives in C review, Modeling Derivatives in C Group buy.
Delivery Method
CHAPTER 1: BLACK-SCHOLES AND PRICING FUNDAMENTALS.
1.1 Forward Contracts.
1.2 Black-Scholes Partial Differential Equation.
1.3 Risk-Neutral Pricing.
1.4 Black-Scholes and Diffusion Process Implementation.
1.5 American Options.
1.6 Fundamental Pricing Formulas.
1.7 Change of Numeraire.
1.8 Girsanov’s Theorem.
1.9 The Forward Measure.
1.10 The Choice of Numeraire.
2.1 Monte Carlo.
2.2 Generating Sample Paths and Normal Deviates.
2.3 Generating Correlated Normal Random Variables.
2.4 Quasi-Random Sequences.
2.5 Variance Reduction and Control Variate Techniques.
2.6 Monte Carlo Implementation.
2.7 Hedge Control Variates.
2.8 Path-Dependent Valuation.
2.9 Brownian Bridge Technique.
2.10 Jump-Diffusion Process and Constant Elasticity of Variance Diffusion Model.
2.11 Object-Oriented Monte Carlo Approach.
3.1 Use of Binomial Trees.
3.2 Cox-Ross-Rubinstein Binomial Tree.
3.3 Jarrow-Rudd Binomial Tree.
3.4 General Tree.
3.5 Dividend Payments.
3.6 American Exercise.
3.7 Binomial Tree Implementation.
3.8 Computing Hedge Statistics.
3.9 Binomial Model with Time-Varying Volatility.
3.10 Two-Variable Binomial Process.
3.11 Valuation of Convertible Bonds.
4.1 Use of Trinomial Trees.
4.2 Jarrow-Rudd Trinomial Tree.
4.3 Cox-Ross-Rubinstein Trinomial Tree.
4.4 Optimal Choice of Λ.
4.5 Trinomial Tree Implementations.
4.6 Approximating Diffusion Processes with Trinomial Trees.
4.7 Implied Trees.
5.1 Explicit Difference Methods.
5.2 Explicit Finite-Difference Implementation.
5.3 Implicit Difference Method.
5.4 LU Decomposition Method.
5.5 Implicit Difference Method Implementation.
5.6 Object-Oriented Finite-Difference Implementation.
5.7 Iterative Methods.
5.8 Crank-Nicolson Scheme.
5.9 Alternating Direction Implicit Method.
6.1 Barrier Options.
6.2 Barrier Option Implementation.
6.3 Asian Options.
6.4 Geometric Averaging.
6.5 Arithmetic Averaging.
6.6 Seasoned Asian Options.
6.7 Lookback Options.
6.8 Implementation of Floating Lookback Option.
6.9 Implementation of Fixed Lookback Option.
7.1 Implied Volatility.
7.2 Volatility Skews and Smiles.
7.3 Empirical Explanations.
7.4 Implied Volatility Surfaces.
7.5 One-Factor Models.
7.6 Constant Elasticity of Variance Models.
7.7 Recovering Implied Volatility Surfaces.
7.8 Local Volatility Surfaces.
7.9 Jump-Diffusion Models.
7.10 Two-Factor Models.
7.11 Hedging with Stochastic Volatility.
8.1 Overview.
8.2 Moving Average Models.
8.3 Exponential Moving Average Models.
8.4 GARCH Models.
8.5 Asymmetric GARCH.
8.6 GARCH Models for High-Frequency Data.
8.7 Estimation Problems.
8.8 GARCH Option Pricing Model.
8.9 GARCH Forecasting.
9.1 Change of Measure for Independent Random Variables.
9.2 Change of Measure for Correlated Random Variables.
9.3 N -Dimensional Random Walks and Brownian Motion.
9.4 N -Dimensional Generalized Wiener Process.
9.5 Multivariate Diffusion Processes.
9.6 Monte Carlo Simulation of Multivariate Diffusion Processes.
9.7 N -Dimensional Lognormal Process.
9.8 Ito’s Lemma for Functions of Vector-Valued Diffusion Processes.
9.9 Principal Component Analysis.
10.1 Short Rate Process.
10.2 Deriving the Bond Pricing Partial Differential Equation.
10.3 Risk-Neutral Drift of the Short Rate.
10.4 Single-Factor Models.
10.5 Vasicek Model.
10.6 Pricing Zero-Coupon Bonds in the Vasicek Model.
10.7 Pricing European Options on Zero-Coupon Bonds with Vasicek.
10.8 Hull-White Extended Vasicek Model.
10.9 European Options on Coupon-Bearing Bonds.
10.10 Cox-Ingersoll-Ross Model.
10.11 Extended (Time-Homogenous) CIR Model.
10.12 Black-Derman-Toy Short Rate Model.
10.13 Black’s Model to Price Caps.
10.14 Black’s Model to Price Swaptions.
10.15 Pricing Caps, Caplets, and Swaptions with Short Rate Models.
10.16 Valuation of Swaps.
10.17 Calibration in Practice.
11.1 Building Binomial Short Rate Trees for Black, Derman, and Toy.
11.2 Building the BDT Tree Calibrated to the Yield Curve.
11.3 Building the BDT Tree Calibrated to the Yield and Volatility Curve.
11.4 Building a Hull-White Tree Consistent with the Yield Curve.
11.5 Building a Lognormal Hull-White (Black-Karasinski) Tree.
11.6 Building Trees Fitted to Yield and Volatility Curves.
11.7 Vasicek and Black-Karasinski Models.
11.8 Cox-Ingersoll-Ross Implementation.
11.9 A General Deterministic-Shift Extension.
11.10 Shift-Extended Vasicek Model.
11.11 Shift-Extended Cox-Ingersoll-Ross Model.
11.12 Pricing Fixed Income Derivatives with the Models.
12.1 The Two-Factor Gaussian G2 Model.
12.2 Building a G2 Tree.
12.3 Two-Factor Hull-White Model.
12.4 Heath-Jarrow-Morton Model.
12.5 Pricing Discount Bond Options with Gaussian HJM.
12.6 Pricing Discount Bond Options in General HJM.
12.7 Single-Factor HJM Discrete-State Model.
12.8 Arbitrage-Free Restrictions in a Single-Factor Model.
12.9 Computation of Arbitrage-Free Term Structure Evolutions.
12.10 Single-Factor HJM Implementation.
12.11 Synthetic Swap Valuation.
12.12 Two-Factor HJM Model.
12.13 Two-Factor HJM Model Implementation.
12.14 The Ritchken and Sankarasubramanian Model.
12.15 RS Spot Rate Process 623
12.16 Li-Ritchken-Sankarasubramanian Model.
12.17 Implementing an LRS Trinomial Tree.
13.1 LIBOR Market Models.
13.2 Specifications of the Instantaneous Volatility of Forward Rates.
13.3 Implementation of Hull-White LIBOR Market Model.
13.4 Calibration of LIBOR Market Model to Caps.
13.5 Pricing Swaptions with Lognormal Forward-Swap Model.
13.6 Approximate Swaption Pricing with Hull-White Approach.
13.7 LFM Formula for Swaption Volatilities.
13.8 Monte Carlo Pricing of Swaptions Using LFM.
13.9 Improved Monte Carlo Pricing of Swaptions with a Predictor-Corrector.
13.10 Incompatibility between LSM and LSF.
13.11 Instantaneous and Terminal Correlation Structures.
13.12 Calibration to Swaption Prices.
13.13 Connecting Caplet and S x 1-Swaption Volatilities.
13.14 Including Caplet Smile in LFM.
13.15 Stochastic Extension of LIBOR Market Model.
13.16 Computing Greeks in Forward LIBOR Models.
14.1 Bermudan Swaptions.
14.2 Implementation for Bermudan Swaptions.
14.3 Andersen’s Method.
14.4 Longstaff and Schwartz Method.
14.5 Stochastic Mesh Method.
14.6 Valuation of Range Notes.
14.7 Valuation of Index-Amortizing Swaps.
14.8 Valuation of Trigger Swaps.
14.9 Quanto Derivatives.
14.10 Gaussian Quadrature.
A.1 Probability Spaces.
A.2 Continuous Probability Spaces.
A.3 Single Random Variables.
A.4 Binomial Random Variables.
A.5 Normal Random Variables.
A.6 Conditional Expectations.
A.7 Probability Limit Theorems.
A.8 Multidimensional Case.
A.9 Dirac’s Delta Function.
B.1 Brownian Motion.
B.2 Brownian Motion with Drift and Volatility.
B.3 Stochastic Integrals.
B.4 Ito’s Formula.
B.5 Geometric Brownian Motion.
B.6 Stochastic Leibnitz Rule.
B.7 Quadratic Variation and Covariation.
References.
About the CD-ROM.
GNU General Public License.
Index.
– After your purchase, you’ll see a View your orders link which goes to the Downloads page. Here, you can download all the files associated with your order.
– Downloads are available once your payment is confirmed, we’ll also send you a download notification email separate from any transaction notification emails you receive from nextskillup.com .
– Since it is a digital copy, our suggestion is to download and save it to your hard drive. In case the link is broken for any reason, please contact us and we will resend the new download link.
– If you cannot find the download link, please don’t worry about that. We will update and notify you as soon as possible at 8:00 AM – 8:00 PM (UTC 8).
Thank You For Shopping With Us!
OUR BEST COLLECTION OF COURSES AND BOOKS
Reviews
There are no reviews yet.